Pembelah Kelapa Otomatis

(sensor pir dan sensor rain )



1.      Tujuan[Kembali]

  • Mempelajari rangkaian aplikasi op-amp
  • Mempelajari simulasi rangkaian aplikasi op-amp
  • Mempelajari prinsip kerja rangkaian aplikasi
  • Mengaplikasikan aplikasi op-amp dalam kehidupan sehari-hari
  • 2.      Alat dan bahan[Kembali]

    ·         Alat

    a.       DC voltmeter

    VOLTMETER DC adalah alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.

    ·         Bahan

    a.       Baterai

    Baterai merupakan alat yang mengubah energi kimia yang tersimpan menjadi energi listrik. Pada percobaa ini, baterai berfungsi sebagai sumber daya.

    b.     Rain Sensor


    Spesifikasi :


    1. Sensor ini bermaterial dari FR-04 dengan dimensi 5cm x 4cm berlapis nikel dan dengan kualitas tinggi pada kedua sisinya
    2. Pada lapisan module mempunyai sifat anti oksidasi sehingga tahan terhadap korosi
    3. Tegangan kerja masukan sensor 3.3V – 5V
    4. Menggunakan IC comparator LM393 yang stabil
    5. Output dari modul comparator dengan kualitas sinyal bagus lebih dari 15mA
    6. Dilengkapi lubang baut untuk instalasi dengan modul lainnya
    7. Terdapat potensiometer yang berfungsi untuk mengatur sensitifitas sensor
    8. Terdapat 2 Output yaitu digital (0 dan 1) dan analog (tegangan)
    9. Dimensi PCB yaitu 3.2 cm x 1.4 cm
    Konfigurasi PIN :
    1. VCC
    2. GND
    3. Output
    4. Testpin 
    Grafik Sensor


    c.       Sensor PIR


    Spesifikasi :
    • Vin : DC 5V � 9V
    • Radius : 180 derajat
    • Jarak deteksi : 5 � 7 meter
    • Output : Digital TTL
    • Memiliki setting sensitivitas
    • Memiliki setting time delay
    • Dimensi : 3,2 cm x 2,4 cm x 2,3 cm
    • Berat : 10 gr

     Konfigurasi PIN :

    1. Pengatur Waktu Jeda : Digunakan untuk mengatur lama pulsa high setelah terdeteksi terjadi gerakan dan gerakan telah berahir. *
    2. Pengatur Sensitivitas : Pengatur tingkat sensitivitas sensor PIR *
    3. Regulator 3VDC : Penstabil tegangan menjadi 3V DC
    4. Dioda Pengaman : Mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND
    5. DC Power : Input tegangan dengan range (3 – 12) VDC (direkekomendasikan menggunakan input 5VDC).
    6. Output Digital : Output digital sensor
    7. Ground : Hubungkan dengan ground (GND)
    8. BISS0001 : IC Sensor PIR
    9. Pengatur Jumper : Untuk mengatur output dari pin digital.
    Grafik PIR Sensor

    d.      Resistor

    Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika.

    e.       Motor

    Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya.

    f.        

    g.       Transistor

    Transistor adalah alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambunng sinyal (switching). Transistor memiliki tiga kaki elektroda, yaitu basis, kolektor, dan emitor.Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis melebihi arus pada kaki kolektor  atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff (saklar tertutup).

    h.      Op-amp

    Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik.  

    i.        Ground

    Berfungsi sebagai penghantar arus listrik langsung ke bumi atau tanah saat terjadi kebocoran isolasi atau percikan api pada konsleting, sebagai proteksi perlatan elektronik sehingga dapat mencegah kerusakan saat terjadi kebocoran tegangan, dan sebagai penetralisir noise (cacat) yang disebabkan oleh daya maupun kualitas komponen tidak standar.

    j.        Relay

    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.

    k.      Logic state

    Sebagai pemberi kondisi,jika diberi logika1 maka sensor aktif sedangkan logika 0 sensor tidak aktif.

    3.      Dasar teori[Kembali]

  • Resistor
  • Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.

    Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.

    Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.

    Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.

    Simbol dari resistor merupakan sebagai berikut :


    Cara Menghitung Nilai Resistor

    Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.

     - Berdasarkan Kode Warna

    Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

    Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

    Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :


    4 Gelang Warna


    Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
    Masukkan angka langsung dari kode warna Gelang ke-2
    Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
    Merupakan Toleransi dari nilai Resistor tersebut

    Contoh :

    Gelang ke 1 : Coklat = 1
    Gelang ke 2 : Hitam = 0
    Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
    Gelang ke 4 : Perak = Toleransi 10%
    Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

     5 Gelang Warna



    Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
    Masukkan angka langsung dari kode warna Gelang ke-2
    Masukkan angka langsung dari kode warna Gelang ke-3
    Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
    Merupakan Toleransi dari nilai Resistor tersebut

    Contoh :

    Gelang ke 1 : Coklat = 1
    Gelang ke 2 : Hitam = 0
    Gelang ke 3 : Hijau = 5
    Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
    Gelang ke 5 : Perak = Toleransi 10%
    Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

     

    Contoh-contoh perhitungan lainnya :

    Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
    Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

    Cara menghitung Toleransi :
    2.200 Ohm dengan Toleransi 5% =
    2200 – 5% = 2.090
    2200 + 5% = 2.310
    ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm

    Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :

    HI CO ME O KU JAU BI UNG A PU
    (HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

      - Berdasarkan Kode Angka

    Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)


    Contoh :

    Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;

    Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :

    Masukkan Angka ke-1 langsung = 4
    Masukkan Angka ke-2 langsung = 7
    Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
    Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

     

    Contoh-contoh perhitungan lainnya :

    222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm

    103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm

    334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

     

    Ada juga yang memakai kode angka seperti dibawah ini :
    (Tulisan R menandakan letaknya koma decimal)
    4R7 = 4,7 Ohm
    0R22 = 0,22 Ohm

    Keterangan :

    Ohm = Ω
    Kilo Ohm = KΩ
    Mega Ohm = MΩ
    1.000 Ohm = 1 kilo Ohm (1 KΩ )
    1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
    1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)

     

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :

     


    Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan


    Ground

    Ground atau pertanahan adalah bagian dari Peralatan Listrik rumah. Namun kebanyakan dari masyatrakat Indonesia sudah terbiasa menyebut pertanahan atau gruonding ini dengan kata arde.
    Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :

     


    •   Power Supply
     

        Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :

    • Transistor N-Channel JFET

    Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis Kanal-N ini adalah Elektron.

    Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).

    Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut. Semakin Negatifnya VG,  semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).


    a.       Rangkaian[Kembali]

            
     Prinsip kerja:

               Kelapa diletakkan di tempatnya, Pir sensor akan mendeteksinya dan akan berlogika satu. Kemudian akan ada tegangan yang bergerak ke Op-Amp supaya dikuatkan, kemudian akan diteruskan ke transistor, arus kemudian akan bergerak ke kaki kolektor dan emitor, kemudian dari kaki emitor arus akan diteruskan ke resistor dan akhirnya ke ground.  Sementara arus yang mengarah ke kaki kolektor akan menju ke relay dan mengaktifkannya dan menggeser switch ke kiri yang membuat arus  mengalir ke baterai dan ke motor dan akhirnya membelah kelapa. Kemudian air kelapa akan mengalir ke tempat menampung air dan pada volume tertentu akan mengaktifkan rain sensor dan membuatnya berlogika satu. Kemudian akan ada tegangan yang bergerak ke Op-Amp supaya dikuatkan, kemudian akan diteruskan ke transistor, arus kemudian akan bergerak ke kaki kolektor dan emitor, kemudian dari kaki emitor arus akan diteruskan ke resistor dan akhirnya ke ground.  Sementara arus yang mengarah ke kaki kolektor akan menju ke relay dan mengaktifkannya dan menggeser switch ke kiri yang membuat arus  mengalir ke baterai dan ke motor dan akhirnya menutup tempat menampung air.


    Cara kerja:

    b.      Video[Kembali]



    c.       Download[Kembali]

    Download html

    Download rangkaian disini

    Download video disini

    Download library sensor gas mq-2 disini

    Download library sensor suara disini

    Download datasheet sensor suara disini

    Downlaod datasheet sensor gas mq-2 disini

     

    Tidak ada komentar:

    Posting Komentar

    BAHAN PRESENTASI UNTUK MATA KULIAH ELEKTRONIKA 2020/2021       OLEH: M. Fito Ramadhan 2 010951042       Dosen Pengampu: ...