Pembelah Kelapa Otomatis
(sensor pir dan sensor rain )
1. Tujuan[Kembali]
2. Alat dan bahan[Kembali]
·
Alat
a. DC voltmeter
VOLTMETER DC
adalah alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC
antara 2 titik pada suatu beban listrik atau rangkaian elektronika.
·
Bahan
a. Baterai
Baterai
merupakan alat yang mengubah energi kimia yang tersimpan menjadi energi
listrik. Pada percobaa ini, baterai berfungsi sebagai sumber daya.
b. Rain Sensor
Spesifikasi :
- Sensor ini bermaterial dari FR-04 dengan dimensi 5cm x 4cm berlapis nikel dan dengan kualitas tinggi pada kedua sisinya
- Pada lapisan module mempunyai sifat anti oksidasi sehingga tahan terhadap korosi
- Tegangan kerja masukan sensor 3.3V – 5V
- Menggunakan IC comparator LM393 yang stabil
- Output dari modul comparator dengan kualitas sinyal bagus lebih dari 15mA
- Dilengkapi lubang baut untuk instalasi dengan modul lainnya
- Terdapat potensiometer yang berfungsi untuk mengatur sensitifitas sensor
- Terdapat 2 Output yaitu digital (0 dan 1) dan analog (tegangan)
- Dimensi PCB yaitu 3.2 cm x 1.4 cm
- VCC
- GND
- Output
- Testpin
c. Sensor PIR
Spesifikasi :
- Vin : DC 5V � 9V
- Radius : 180 derajat
- Jarak deteksi : 5 � 7 meter
- Output : Digital TTL
- Memiliki setting sensitivitas
- Memiliki setting time delay
- Dimensi : 3,2 cm x 2,4 cm x 2,3 cm
- Berat : 10 gr
Konfigurasi PIN :
- Pengatur Waktu Jeda : Digunakan untuk mengatur lama pulsa high setelah terdeteksi terjadi gerakan dan gerakan telah berahir. *
- Pengatur Sensitivitas : Pengatur tingkat sensitivitas sensor PIR *
- Regulator 3VDC : Penstabil tegangan menjadi 3V DC
- Dioda Pengaman : Mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND
- DC Power : Input tegangan dengan range (3 – 12) VDC (direkekomendasikan menggunakan input 5VDC).
- Output Digital : Output digital sensor
- Ground : Hubungkan dengan ground (GND)
- BISS0001 : IC Sensor PIR
- Pengatur Jumper : Untuk mengatur output dari pin digital.
d. Resistor
Resistor
adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi
aliran listrik yang mengalir dalam suatu rangkain elektronika.
e. Motor
Motor
Listrik DC atau DC Motor adalah suatu perangkat yang mengubah
energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC
ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor
memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct
Current) untuk dapat menggerakannya.
f.
g. Transistor
Transistor
adalah alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus
atau penyambunng sinyal (switching). Transistor memiliki tiga kaki elektroda,
yaitu basis, kolektor, dan emitor.Pada rangkaian kali ini digunakan transistor
2SC1162 bertipe NPN. Transistor ini diumpamakan sebagai saklar, yaitu ketika
kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang
disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka
tidak ada arus mengalir dari kolektor ke emitor yang disebut dengan kondisi
OFF. Namun, jika arus yang diberikan pada kaki basis melebihi arus pada kaki
kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki
kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff (saklar
tertutup).
h. Op-amp
Operational
Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari
bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik.
i.
Ground
Berfungsi
sebagai penghantar arus listrik langsung ke bumi atau tanah saat terjadi
kebocoran isolasi atau percikan api pada konsleting, sebagai proteksi perlatan
elektronik sehingga dapat mencegah kerusakan saat terjadi kebocoran tegangan, dan
sebagai penetralisir noise (cacat) yang disebabkan oleh daya maupun kualitas
komponen tidak standar.
j.
Relay
Relay adalah
Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen
Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni
Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay
menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga
dengan arus listrik yang kecil (low power) dapat menghantarkan listrik
yang bertegangan lebih tinggi.
k. Logic state
Sebagai
pemberi kondisi,jika diberi logika1 maka sensor aktif sedangkan logika 0 sensor
tidak aktif.
3. Dasar teori[Kembali]
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
- Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
4 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
- Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)
Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm
Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Ground
Ground atau pertanahan adalah bagian dari Peralatan Listrik rumah. Namun kebanyakan dari masyatrakat Indonesia sudah terbiasa menyebut pertanahan atau gruonding ini dengan kata arde.
Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
- Power Supply
Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
- Transistor N-Channel JFET
Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis Kanal-N ini adalah Elektron.
Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).
Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut. Semakin Negatifnya VG, semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).
- Transistor N-Channel JFET
Saluran atau Kanal pada jenis ini terbentuk dari bahan semikonduktor tipe N dengan satu ujungnya adalah Source (S) dan satunya lagi adalah Drain (D). Mayoritas pembawa muatan atau Carriers pada JFET jenis Kanal-N ini adalah Elektron.
Gate atau Gerbang pada JFET jenis Kanal-N ini terdiri dari bahan semikonduktor tipe P. Bagian lain yang terbuat dari Semikonduktor tipe P pada JFET Kanal-N ini adalah bagian yang disebut dengan Subtrate yaitu bagian yang membentuk batas di sisi saluran berlawanan Gerbang (G).
Tegangan pada Terminal Gerbang (G) menghasilkan medan listrik yang mempengaruhi aliran pada pembawa muatan yang melalui saluran tersebut. Semakin Negatifnya VG, semakin sempit pula salurannya yang akhirnya mengakibatkan semakin kecil arus pada outputnya (ID).
a. Rangkaian[Kembali]
Kelapa diletakkan di tempatnya, Pir sensor akan mendeteksinya dan akan berlogika satu. Kemudian akan ada tegangan yang bergerak ke Op-Amp supaya dikuatkan, kemudian akan diteruskan ke transistor, arus kemudian akan bergerak ke kaki kolektor dan emitor, kemudian dari kaki emitor arus akan diteruskan ke resistor dan akhirnya ke ground. Sementara arus yang mengarah ke kaki kolektor akan menju ke relay dan mengaktifkannya dan menggeser switch ke kiri yang membuat arus mengalir ke baterai dan ke motor dan akhirnya membelah kelapa. Kemudian air kelapa akan mengalir ke tempat menampung air dan pada volume tertentu akan mengaktifkan rain sensor dan membuatnya berlogika satu. Kemudian akan ada tegangan yang bergerak ke Op-Amp supaya dikuatkan, kemudian akan diteruskan ke transistor, arus kemudian akan bergerak ke kaki kolektor dan emitor, kemudian dari kaki emitor arus akan diteruskan ke resistor dan akhirnya ke ground. Sementara arus yang mengarah ke kaki kolektor akan menju ke relay dan mengaktifkannya dan menggeser switch ke kiri yang membuat arus mengalir ke baterai dan ke motor dan akhirnya menutup tempat menampung air.
Cara kerja:
b. Video[Kembali]
c. Download[Kembali]
Download html
Download rangkaian disini
Download
video disini
Download library
sensor gas mq-2 disini
Download library sensor suara disini
Download datasheet sensor suara disini
Downlaod datasheet sensor gas mq-2 disini
Tidak ada komentar:
Posting Komentar